Not viewing this page correctly? Clear your browser cache!

Despite decades of innovation resulting in technologies such as this solar cooker designed to ease global poverty, poverty remains. One expert proposes a new direction for global development engineering.

Hot Topics

December 19, 2019

Engineers Are Not Ending Poverty. Time for a Change?

contributor: Rob Goodier

Engineers have designed and deployed appropriate technologies that solve the problems of global poverty, but poverty persists. The abundance of quality, low-powered, low-cost devices, however ingeniously conceived, may not have made much of a dent in the number of people who earn less than (USD) $5 per day, Dr. Evan Thomas argues in the journal Sustainability.

See Toward a New Field of Global Engineering in Sustainability 2019

Dr. Thomas, who heads the Mortenson Center in Global Engineering at the University of Colorado Boulder (USA), suggests that engineers are not having their anticipated impact on poverty. The essay attempts to shove engineers out of their comfort zones and calls for a new phase in engineering for global development. From the article:

Over the past nearly fifty years, appropriate technology and community participatory development has failed to eliminate or even substantially reduce the number of people living in poverty in developing countries.

…Many engineering efforts on a community or product scale have required either volunteer or low-salaried engineering labor, which has the effect of reducing the professional depth of the contributions of engineers to global development. Meanwhile, larger-scale infrastructure efforts are often the purview of major engineering and technical contractors, [that cannot address] systemic development challenges.

…An additional chronic limitation is the under-representation of engineers who are from low- and middle-income countries. Development programs instead often rely on short-term engagements by western engineers.

While case studies and attractive examples of successful products and services are laudatory, the reality remains that these are piecemeal patches to endemic structural challenges.

In response, Dr. Thomas proposes the rise of the Global Engineer. With the new title come new responsibilities. Engineers working in global development should measure the impact of introduced technologies and infrastructure, but they should also measure the detrimental effects of national and global policies that perpetuate poverty, Dr. Thomas writes.

This essay doesn’t announce the death of appropriate technology, but rather suggests that the time has come to update the practice. That means including technologies that the father of the term, E. F. Schumacher, likely would have shunned. Mobile technologies, for example. Satellite data and cheap imports. The argument gathers threads from this sector’s recent history that, together, look like a trend. This website, Engineering for Change, has published opinions in favor of the spectrum of options, from locally manufactured products made of local materials, to high-tech prototypes for delivering Wi-Fi, mapping data and more. Without calling for an end to the development of small-scale, local products, Dr. Thomas points out that the pool of technology used in global economic development has expanded.  And, he writes, Global Engineers should use the range of technologies available to them to document the harm that global economic and political systems are inflicting on the world’s poor. The word “activist” does not appear in the essay, but it is its natural conclusion. This is an opening shot in the rise of the activist engineer.

Dr. Thomas’ critique of the current state of global development engineering could read as a self-deprecating note to himself as well as to his global peers. One of those peers, Dr. Cristian Birzer, picked up that thread in a comment about the essay.

“At the end of the second section is a rather brutal summary on small-scale support providing no dent to the system that results in poverty. Knowing the author’s other work, which appears to have been many small-scale solutions that show impact to individuals, this was initially a surprise, but it is uncomfortably true,” says Dr. Birzer, who is the Senior Lecturer in Mechanical Engineering at the University of Adelaide (Australia) and a Contributing Editor at E4C.

“No matter how much is done on cookstoves or WASH [Water, Sanitation and Hygiene] systems; on small-scale power distributions or suitcase-based medical kits; people will still live in poverty. The technology we develop as engineers addresses the symptoms of poverty, not the cause. At small scales, technology can help with capacity building – opportunities for schools and education, manufacturing and industry, health and improved quality of life. But the policies and systems need to change. The engineering profession can significantly help address the symptoms and cause, but without awareness, our capacity is limited,” Dr. Birzer says.

Generalizing this line of criticism, one implication is that engineers should think bigger. This is not the first time that experts in this sector have leveled that charge at themselves. The Institute of Transformative Technologies was founded, in part, on the premise that the global development engineering sector is focused on small-scale projects and dependent on poorly funded social entrepreneurs to do the kind of work that traditionally has required the effort of entire nations. Things like healthcare, and water and sanitation infrastructure. The Institute’s response has been the 50 Breakthroughs, a vetted list of technological needs upon which the world can focus research and development.

See 50 Breakthroughs Set the Agenda for Research into Global Development Technology

It’s debatable that technology is not ending poverty. From a different perspective, the statistics with which Dr. Thomas supports his conclusions could be read as a success story. He writes that the fraction of the world’s population living in extreme poverty has decreased in the past 50 years while, due to population growth, the absolute number of people has remained the same. That statement, of course, could be seen as a testament to the efficacy of the past 50 years of work in decreasing the rate of global poverty. Few have believed it was going to be a short journey to global financial equity. But the criticism is fair. And engineering may be one of the few professions that would welcome new tools and new methods, especially if they promise greater efficiency.

Read the opinion here: Toward a New Field of Global Engineering in Sustainability 2019

tags : academic programs, analysis, design for global development, research brief

Rob Goodier

Leave a Comment

Sign In to comment.

  • Author Avatar 0
  • Cristian Birzer
  • Author Avatar 2
  • Author Avatar 3

by engineers.
for everyone.

E4C Membership is a curated experience! When you become a member, we will tailor a unique user profile for you based on the way you engage with our content over time. Your actions and preferences will allow us to serve you content that is most relevant to you. In addition, becoming an E4C member grants you access to exclusive engagement opportunities and the E4C newsletter.

Join E4C and become a part of a global community that believes engineering can change the world!

Become a Member